Let’s break down this equilibrium problem step by step.
Reaction:
COCl2(g)⇌CO(g)+Cl2(g)\text{COCl}_2(g) \rightleftharpoons \text{CO}(g) + \text{Cl}_2(g)
We are asked to find the
degree of dissociation (α) under two different conditions.
Condition 1: Pure COCl₂ at a total equilibrium pressure of 1 atm
1. ICE Table using partial pressures
Let initial pressure of COCl₂ = P0P_0, and degree of dissociation = α\alpha
Species | Initial Pressure | Change | Equilibrium Pressure |
---|
COCl₂(g) | P0P_0 | −P0α-P_0\alpha | P0(1−α)P_0(1 - \alpha) |
CO(g) | 0 | +P0α+P_0\alpha | P0αP_0\alpha |
Cl₂(g) | 0 | +P0α+P_0\alpha | P0αP_0\alpha |
2. Total Equilibrium Pressure
Ptotal=P0(1−α)+P0α+P0α=P0(1+α)P_{\text{total}} = P_0(1 - \alpha) + P_0\alpha + P_0\alpha = P_0(1 + \alpha)
Given: Ptotal=1P_{\text{total}} = 1 atm
P0(1+α)=1⇒P0=11+αP_0(1 + \alpha) = 1 \Rightarrow P_0 = \frac{1}{1 + \alpha}
3. Equilibrium Constant Expression KpK_p
Kp=PCO⋅PCl2PCOCl2=(P0α)2P0(1−α)=P0α21−αK_p = \frac{P_{\text{CO}} \cdot P_{\text{Cl}_2}}{P_{\text{COCl}_2}} = \frac{(P_0\alpha)^2}{P_0(1 - \alpha)} = \frac{P_0\alpha^2}{1 - \alpha}
Substitute P0=11+αP_0 = \frac{1}{1 + \alpha}:
Kp=α2(1−α)(1+α)=α21−α2K_p = \frac{\alpha^2}{(1 - \alpha)(1 + \alpha)} = \frac{\alpha^2}{1 - \alpha^2}
Now, assume α=0.32\alpha = 0.32 (based on options):
Kp=(0.32)21−(0.32)2=0.10241−0.1024=0.10240.8976≈0.1141K_p = \frac{(0.32)^2}{1 - (0.32)^2} = \frac{0.1024}{1 - 0.1024} = \frac{0.1024}{0.8976} \approx 0.1141
Condition 2: 0.4 atm of inert gas added, total pressure = 1 atm
Here, 0.4 atm of an
inert gas is added, and total pressure remains 1 atm.
Let new initial pressure of COCl₂ be P0′P_0', and new degree of dissociation = α′\alpha'
Species | Initial Pressure | Change | Equilibrium Pressure |
---|
COCl₂(g) | P0′P_0' | −P0′α′-P_0'\alpha' | P0′(1−α′)P_0'(1 - \alpha') |
CO(g) | 0 | +P0′α′+P_0'\alpha' | P0′α′P_0'\alpha' |
Cl₂(g) | 0 | +P0′α′+P_0'\alpha' | P0′α′P_0'\alpha' |
Inert Gas | 0.4 atm | 0 | 0.4 atm |
1. Total Equilibrium Pressure:
Ptotal=P0′(1+α′)+0.4=1⇒P0′(1+α′)=0.6⇒P0′=0.61+α′P_{\text{total}} = P_0'(1 + \alpha') + 0.4 = 1 \Rightarrow P_0'(1 + \alpha') = 0.6 \Rightarrow P_0' = \frac{0.6}{1 + \alpha'}
2. Use the same KpK_p (temperature constant):
Kp=(P0′α′)2P0′(1−α′)=P0′α′21−α′K_p = \frac{(P_0'\alpha')^2}{P_0'(1 - \alpha')} = \frac{P_0'\alpha'^2}{1 - \alpha'}
Substitute P0′=0.61+α′P_0' = \frac{0.6}{1 + \alpha'}:
Kp=0.6α′2(1−α′)(1+α′)=0.6α′21−α′2K_p = \frac{0.6 \alpha'^2}{(1 - \alpha')(1 + \alpha')} = \frac{0.6 \alpha'^2}{1 - \alpha'^2}
Equating to earlier KpK_p:
0.1141=0.6α′21−α′2⇒0.1141(1−α′2)=0.6α′2⇒0.1141=0.7141α′2⇒α′2=0.11410.7141≈0.15978⇒α′≈0.15978≈0.3997≈0.40.1141 = \frac{0.6 \alpha'^2}{1 - \alpha'^2} \Rightarrow 0.1141 (1 - \alpha'^2) = 0.6 \alpha'^2 \Rightarrow 0.1141 = 0.7141 \alpha'^2 \Rightarrow \alpha'^2 = \frac{0.1141}{0.7141} \approx 0.15978 \Rightarrow \alpha' \approx \sqrt{0.15978} \approx 0.3997 \approx 0.4
Final Answer:
- Under condition 1, α≈0.32\alpha \approx 0.32
- Under condition 2, α′≈0.4\alpha' \approx 0.4
Correct Option: (B) 0.32 and 0.4