NEET 2025 Reward Announcement !   *   Join the SATHEE channel for the latest updates- Click Here to Join the Channel.

Let $f: R \rightarrow R$ be a continuous function such that $f(3 x)-f(x)=x$. If $f(8)=7$, then $f(14)$ is equal to:

$\text { Let } f: R \rightarrow R \text { be a continuous function such that } f(3 x)-f(x)=x \text {. If } f(8)=7 \text {, then } f(14) \text { is equal to: }$
 
Last edited by a moderator:
Solution: \[ f(3x)-f(x)=x,f(8)=7 \]Put \(x=8,\) \(\Rightarrow f\left(24\right)-f\left(8\right)=8\Rightarrow f\left(24\right)-7=8\)
\[\Rightarrow f\left(24\right)=15\]Let, \(f\left(x\right)=mx+c,\)

Since,
\(f\left(8\right)=7,\) \(7=8m+c\)
\(f\left(24\right)=15,\) \(15=24m+c\)

\(\Rightarrow m=\frac12,c=3\)

So, \[ f\left(x\right)=\frac{x}{2}+3 \]Let's check that \(f\left(x\right)\) is satisfying the given conditions or not.

Given, \[f(3x)-f(x)=x,f(8)=7\]Also,\[f\left(3x\right)-f\left(x\right)=\frac{3x}{2}+3-\frac{x}{2}-3=\frac{3x}{2}-\frac{x}{2}=x,\]\[ f\left(8\right)=\frac82+3=7 \]Hence, \(f\left(x\right)\) is satisfying the given conditions.
Therefore, \[ f\left(x\right)=\frac{x}{2}+3 \]Hence, \[ f\left(14\right)=\frac{14}{2}+3=10 \]
 
I assumed to see if \(f(x)\) can be a linear expression or not, and it turned out to be one. If the linear expression did not satisfy the given conditions, then I would try approaching the question in a different way.
 
Sir if it have been turned to not one of the linear expression then what would be our steps to solve it ?
 
Sir if it have been turned to not one of the linear expression then what would be our steps to solve it ?
Then we could try putting other simple functions. It depends on the question.
There can be another method also. Like, in the above question, we you replace \(x\) by $$ \frac{x}{3},\frac{x}{3^2},\ldots,\frac{x}{3^{n}} $$ in the equation $$ f\left(3x\right)-f\left(x\right)=3 $$ You'll get,
$$ f(3x)-f(x)=x $$
$$ f\left(x\right)-f\left(\frac{x}{3}\right)=\frac{x}{3} $$
$$ f\left(\frac{x}{3}\right)-f\left(\frac{x}{3^2}\right)=\frac{x}{3^2} $$
\[\vdots\]
$$ f\left(\frac{x}{3^{n-1}}\right)-f\left(\frac{x}{3^{n}}\right)=\frac{x}{3^{n}} $$

Now add above equations and take the limit as \(n -> \infty\),

$$ \lim_{n\to\infty}\begin{array}{l}f(3x)-f\left(\frac{x}{3^{n}}\right)=x\left(1+\frac{1}{3}+\frac{1}{3^2}+\cdots+\frac{1}{3^{n}}\right)\end{array} $$

$$ f(3x)-f(0)=x\left(\frac{1}{1-\frac13_{}}\right)=\frac{3x}{2} $$

Given, \( f(8) = 7\), Put \(x=8/3\), we get,

\[f(0) = 3\]

\[ \begin{array}{r}f(3 x)=\frac{3 x}{2}+3 \\ f(x)=\frac{x}{2}+3\end{array} \]
 
Back
Top